3.1.69 \(\int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx\) [69]

3.1.69.1 Optimal result
3.1.69.2 Mathematica [B] (verified)
3.1.69.3 Rubi [A] (verified)
3.1.69.4 Maple [A] (verified)
3.1.69.5 Fricas [A] (verification not implemented)
3.1.69.6 Sympy [F]
3.1.69.7 Maxima [A] (verification not implemented)
3.1.69.8 Giac [A] (verification not implemented)
3.1.69.9 Mupad [B] (verification not implemented)

3.1.69.1 Optimal result

Integrand size = 19, antiderivative size = 97 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {\text {arctanh}(\sin (c+d x))}{a^3 d}-\frac {\sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {7 \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {22 \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )} \]

output
arctanh(sin(d*x+c))/a^3/d-1/5*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-7/15*sin(d*x 
+c)/a/d/(a+a*cos(d*x+c))^2-22/15*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))
 
3.1.69.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(201\) vs. \(2(97)=194\).

Time = 0.55 (sec) , antiderivative size = 201, normalized size of antiderivative = 2.07 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (60 \cos ^5\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+3 \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+14 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+88 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+3 \cos \left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {c}{2}\right )+14 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {c}{2}\right )\right )}{15 a^3 d (1+\cos (c+d x))^3} \]

input
Integrate[Sec[c + d*x]/(a + a*Cos[c + d*x])^3,x]
 
output
(-2*Cos[(c + d*x)/2]*(60*Cos[(c + d*x)/2]^5*(Log[Cos[(c + d*x)/2] - Sin[(c 
 + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + 3*Sec[c/2]*Sin[( 
d*x)/2] + 14*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] + 88*Cos[(c + d*x)/2 
]^4*Sec[c/2]*Sin[(d*x)/2] + 3*Cos[(c + d*x)/2]*Tan[c/2] + 14*Cos[(c + d*x) 
/2]^3*Tan[c/2]))/(15*a^3*d*(1 + Cos[c + d*x])^3)
 
3.1.69.3 Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {3042, 3245, 3042, 3457, 3042, 3457, 27, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x)}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {(5 a-2 a \cos (c+d x)) \sec (c+d x)}{(\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 a-2 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {\left (15 a^2-7 a^2 \cos (c+d x)\right ) \sec (c+d x)}{\cos (c+d x) a+a}dx}{3 a^2}-\frac {7 a \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {15 a^2-7 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {7 a \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int 15 a^3 \sec (c+d x)dx}{a^2}-\frac {22 a^2 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {7 a \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {15 a \int \sec (c+d x)dx-\frac {22 a^2 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {7 a \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {15 a \int \csc \left (c+d x+\frac {\pi }{2}\right )dx-\frac {22 a^2 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {7 a \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\frac {15 a \text {arctanh}(\sin (c+d x))}{d}-\frac {22 a^2 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {7 a \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

input
Int[Sec[c + d*x]/(a + a*Cos[c + d*x])^3,x]
 
output
-1/5*Sin[c + d*x]/(d*(a + a*Cos[c + d*x])^3) + ((-7*a*Sin[c + d*x])/(3*d*( 
a + a*Cos[c + d*x])^2) + ((15*a*ArcTanh[Sin[c + d*x]])/d - (22*a^2*Sin[c + 
 d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2))/(5*a^2)
 

3.1.69.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.1.69.4 Maple [A] (verified)

Time = 0.89 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {-\frac {\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d \,a^{3}}\) \(75\)
default \(\frac {-\frac {\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d \,a^{3}}\) \(75\)
parallelrisch \(\frac {-3 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-60 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+60 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-105 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{60 a^{3} d}\) \(75\)
norman \(\frac {-\frac {7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}-\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}-\frac {\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )}{20 d a}}{a^{2}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3} d}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3} d}\) \(101\)
risch \(-\frac {2 i \left (15 \,{\mathrm e}^{4 i \left (d x +c \right )}+75 \,{\mathrm e}^{3 i \left (d x +c \right )}+145 \,{\mathrm e}^{2 i \left (d x +c \right )}+95 \,{\mathrm e}^{i \left (d x +c \right )}+22\right )}{15 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{3} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d \,a^{3}}\) \(111\)

input
int(sec(d*x+c)/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)
 
output
1/4/d/a^3*(-1/5*tan(1/2*d*x+1/2*c)^5-4/3*tan(1/2*d*x+1/2*c)^3-7*tan(1/2*d* 
x+1/2*c)-4*ln(tan(1/2*d*x+1/2*c)-1)+4*ln(tan(1/2*d*x+1/2*c)+1))
 
3.1.69.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.63 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {15 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (22 \, \cos \left (d x + c\right )^{2} + 51 \, \cos \left (d x + c\right ) + 32\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate(sec(d*x+c)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 
output
1/30*(15*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*log(sin( 
d*x + c) + 1) - 15*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1 
)*log(-sin(d*x + c) + 1) - 2*(22*cos(d*x + c)^2 + 51*cos(d*x + c) + 32)*si 
n(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d 
*x + c) + a^3*d)
 
3.1.69.6 Sympy [F]

\[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sec {\left (c + d x \right )}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

input
integrate(sec(d*x+c)/(a+a*cos(d*x+c))**3,x)
 
output
Integral(sec(c + d*x)/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x 
) + 1), x)/a**3
 
3.1.69.7 Maxima [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.23 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}}{60 \, d} \]

input
integrate(sec(d*x+c)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 
output
-1/60*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + 
 c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3 - 60*log(sin(d*x + 
 c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) + 1) - 
 1)/a^3)/d
 
3.1.69.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.97 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {\frac {60 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac {3 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 20 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

input
integrate(sec(d*x+c)/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 
output
1/60*(60*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*log(abs(tan(1/2*d*x + 
 1/2*c) - 1))/a^3 - (3*a^12*tan(1/2*d*x + 1/2*c)^5 + 20*a^12*tan(1/2*d*x + 
 1/2*c)^3 + 105*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d
 
3.1.69.9 Mupad [B] (verification not implemented)

Time = 14.18 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.60 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {105\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-120\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )+20\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{60\,a^3\,d} \]

input
int(1/(cos(c + d*x)*(a + a*cos(c + d*x))^3),x)
 
output
-(105*tan(c/2 + (d*x)/2) - 120*atanh(tan(c/2 + (d*x)/2)) + 20*tan(c/2 + (d 
*x)/2)^3 + 3*tan(c/2 + (d*x)/2)^5)/(60*a^3*d)